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4.3.2 Poincaré supersymmetries 16

5. Discussion and outlook 16

A. Supersymmetries of the asymptotically flat background 17

B. D-branes spanning other submanifolds 17

B.1 D3-brane wrapping S3 17

B.2 Branes spanning AdS2 wrapping a T 2 within S3 18

– 1 –



J
H
E
P
1
2
(
2
0
0
6
)
0
2
2

1. Introduction and summary

The study of D-brane probes in the near-horizon region of BPS D-brane systems has

recently had interesting applications to the counting of BPS degeneracies. D-brane systems

with an AdSp × Sq near-horizon region where supersymmetry is enhanced allow for D-

brane probe configurations localized near the horizon preserving a portion of the enhanced

supersymmetries. Such branes have been constructed in backgrounds with AdS2 × S2 [1],

AdS3 × S2 [2] and AdS2 × S3 [3] near-horizon geometries. The branes considered in these

papers possess a number of interesting properties. The solutions of interest are static

with respect to a choice of global time coordinate, and supersymmetry fixes their radial

position in AdS in terms of their charges. Furthermore, they preserve half of the near-

horizon supersymmetries but break all of the supersymmetries of the full asymptotically flat

geometry. In case they wrap the sphere or a cycle in the internal space with worldvolume

flux turned on, they carry lower D-brane charge and can be seen as bound states of lower-

dimensional D-branes through a form of the Myers effect [4, 5].

It is natural to interpret such branes as ‘near-horizon bound states’ of the D-brane

system, and one would expect that by quantizing their moduli one should be able to count

degeneracies of BPS states. This expectation was borne out for the D0-D4 black hole

in type IIA, where the quantum mechanical counting reduces to counting lowest Landau

levels in a magnetic field on the internal space and reproduces the entropy both for the

‘large’ [6] and ‘small’ [7] black hole cases. Furthermore, for black holes constructed out

of M5-branes, the elliptic genus can be reconstructed by counting near-horizon wrapped

membrane states [2, 8].

Motivated by these results, we revisit the two-charge D1-D5 system on M (where M

can be T 4 or K3), forming a black string in 6 dimensions (see [9, 10] for reviews). This

system has a large ground-state degeneracy, the logarithm of which is proportional to√
Q1Q5 for large charges. We will look for supersymmetric D-branes in the near horizon

AdS3 × S3 ×M region. In earlier works, half-BPS solutions which carry momentum along

certain directions, such as giant gravitons [11] and branes wrapping S3 with momentum

along AdS3 [12] were constructed. The branes we will consider here differ from these

in that they do not carry any momentum and are entirely static with respect to global

time. We allow the branes to carry arbitrary worldvolume fluxes (and hence also induced

lower-dimensional D-brane charges).

The 16 supersymmetries of the near-horizon region split into 8 supersymmetries that

extend to the full asymptotically flat solution, which we will call ‘Poincaré supersymme-

tries’, and 8 ‘enhanced’ supersymmetries that exist only in the near-horizon limit. They

are most easily distinguished in Poincaré coordinates in AdS3. D-brane probes preserving

some Poincaré supersymmetries should have a BPS counterpart in the full geometry, and

we will verify for each solution whether it preserves Poincaré supersymmetries.

The outcome of our classification yields a large variety of D-branes preserving half of

the near-horizon supersymmetries and is summarized in the following table.
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brane type AdS3 S3 M near-horizon susy Poincaré susy

D1 AdS2 · · 1/2 1/2

D3 AdS2 · 2-cycle 1/2 1/2

D5 AdS2 · M 1/2 1/2

D3 AdS2 S2 · 1/2 1/2

D7 AdS2 S2 M 1/2 1/2

The solutions come in two types: branes of the first type span an AdS2 subspace in

AdS3 × S3 (and possibly wrap a supersymmetric cycle in M) while the second type of

branes spans an AdS2 × S2 subspace in AdS3 × S3 (and possibly wrap the whole of M).

Branes of the second type are dipolar as the S2 is contractible within S3, and are stabilized

by worldvolume flux [13, 14]. The size of the S2 is quantized in terms of the number of

fundamental strings bound to the D-brane. In all the above solutions, the radial position

in AdS3 is fixed in terms of the charges and it is natural to view them as ‘near-horizon

bound states’ of the D1-D5 system. One novel feature is that, contrary to the examples

in other backgrounds discussed above, these probe branes do preserve half of the Poincaré

supersymmetries of the full asymptotically flat geometry.

Let us comment on related D-brane solutions that have appeared in the literature.

The AdS2 × S2 branes were studied from the point of view of the DBI action in [14, 15].

There is a substantial body of work discussing D-branes in the S-dual F1-NS5 background

starting with [16]. The S-dual versions of branes with worldvolumes AdS2 and AdS2 × S2

appear there (the latter was shown to be half-BPS). A sampling of further studies of AdS2

branes in the NS background includes [17] We also want to point out that D-branes with

an AdS2 component to their worldvolume are known to exist in other D-brane backgrounds

as well [18 – 21].

This paper is organized as follows. In section 2 we construct the Killing spinors on

AdS3 × S3 × M in suitable coordinates and review the conditions for probe branes to

preserve supersymmetry. In section 3 we construct supersymmetric branes which extend

along AdS2 and possibly wrap cycles on M . In section 4 we turn to branes that span

AdS2 × S2 and possibly wrap cycles on M . We end with a discussion of open problems

in 5. Appendix A discusses how Poincaré supersymmetries extend to the full geometry and

appendix B discusses some branes spanning other submanifolds, none of which were found

to be supersymmetric.

2. The near-horizon limit of the D1-D5 system

In this section, we review some properties of the near-horizon limit of the D1-D5 system

needed in the rest of the paper.

2.1 Background

Consider type IIB on S1×M (with M being either K3 or T 4), with D5-branes wrapped on

S1×M and D1-branes on S1. We will take the S1 radius to infinity in what follows, so that

the configuration looks like a black string in six dimensions. The near-horizon supergravity
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background is AdS3 × S3 × M with constant dilaton and nonvanishing RR 3-form flux

F (3) = dC(2). On AdS3, we will use a global ‘anti-de Sitter’ coordinate system (τ, ω, ξ) in

which the constant ξ slices are isomorphic to AdS2. The supergravity background is then

given by (see e.g. [24]):

ds2 = r1r5[dξ2 + cosh2 ξ(− cosh2 ωdτ2 + dω2)

+dψ2 + sin2 ψ(dθ2 + sin2 θdϕ2)] +
r1

r5
ds2

M

e−φ =
1

g

r5

r1

C(2) =
r2
5

g

[(

ξ +
1

2
sinh 2ξ

)

cosh ωdω ∧ dτ +

(

ψ − 1

2
sin 2ψ

)

sin θdθ ∧ dϕ

]

(2.1)

where ds2
M is a Ricci-flat metric on M and

r5 =
√

gQ5α′

r1 =
4π2α′

√
VM

√

gQ1α′ (2.2)

with VM the volume of M in the metric ds2
M and Q1, Q5 the D1- and D5 charges. The

coordinates τ, ω, ξ vary over R while 0 ≤ ψ, θ < π, 0 ≤ ϕ < 2π.

2.2 Killing spinors

The D1-D5 background preserves 8 supersymmetries which get enhanced to 16 super-

symmetries in the near-horizon limit. We will now derive the explicit expression for the

near-horizon Killing spinors needed in the following sections.

In type IIB supergravity, the supersymmetry variation parameter ε consists of two

chiral spinors of the same chirality:

ε =

(

ε1

ε2

)

(2.3)

where Γ(10)ε1,2 = ε1,2 with Γ(10) ≡ Γ0 . . . Γ9. We now examine the conditions for ε to be

a Killing spinor. Our supergravity conventions follow [25] and the dilatino and gravitino

variations read1

δλ = −1

4
eφF/ (3)σ

1ε

δΨM̂ = ∇M̂ε +
eφ

8
F/ (3)ΓM̂σ1ε

The vanishing of the dilatino variation amounts to a chirality projection

Γ(6)ε = Γ(4)ε = −ε (2.4)

1Our 10D index conventions are as follows: M, N = 0, . . . 9, µ, ν = 0, . . . , 5, m, n = 6, . . . , 9. Hatted

indices M̂, µ̂, m̂ refer to a coordinate basis while unhatted ones M, µ, m are orthonormal frame indices.
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where Γ(6) ≡ Γ0 . . . Γ5, Γ(4) ≡ Γ6 . . . Γ9. while the gravitino variation with index on the

internal manifold M imposes that ε is covariantly constant in the internal directions:

∇m̂ε = 0. (2.5)

The gravitino variation with index on AdS3 × S3 then leads to the equations

δΨµ̂ =

[

∇µ̂ +
1

2
√

r1r5
Γ012Γµ̂σ1

]

ε = 0 (2.6)

Symmetry dictates that solutions to this equation should be given by multiplying a constant

spinor by an SL(2, R) × SU(2) group element in a suitable representation [26]. Expressing

the spin connection on AdS3 × S3 in terms of the following vielbein2

e0 =
√

r1r5 cosh ξ cosh ωdt e3 =
√

r1r5dψ

e1 =
√

r1r5 cosh ξdω e4 =
√

r1r5 sin ψdθ

e2 =
√

r1r5dξ e5 =
√

r1r5 sin ψ sin θdφ.

one finds the solutions

ε = e
ξ
2
Γ02σ1

e
ω
2
Γ10σ1

e
τ
2
Γ21σ1

e
π
2
−ψ

2
Γ45σ1

e
π
2
−θ

2
Γ35σ1

e
φ
2
Γ43σ1

ε0 (2.7)

Here, ε is independent of the AdS3×S3 coordinates and satisfies the conditions (2.4), (2.5):

∂µ̂ε0 = ∇m̂ε0 = 0

Γ(6)ε0 = Γ(4)ε0 = −ε0 (2.8)

We can write a more explicit expression for ε0 by decomposing the SO(1, 9) gamma

matrices under the SO(1, 5) × SO(4) subgroup as follows:

Γµ = γµ ⊗ 1 µ = 0 . . . 5 (2.9)

Γm = γ(6) ⊗ γm m = 6 . . . 9 (2.10)

where γµ and γm are SO(1, 5) and SO(4) gamma matrices respectively, and we have de-

fined γ(6) = γ0 . . . γ5, γ(4) = γ6 . . . γ9. The ten-dimensional chirality operator is Γ(10) ≡
Γ0 . . . Γ9 = γ(6) ⊗ γ(4). A chiral spinor in ten dimensions then decomposes as

16 → (4,2) + (4′,2′).

where the unprimed (primed) representations have positive (negative) chirality. When M

is K3, we take the convention that the representation 2 forms a doublet under the SU(2)

holonomy, while 2′ consists of two holonomy singlets. The chirality condition in (2.8)

2Note that this is not the left-invariant basis on the SL(2, R)×SU(2) group manifold but rather a linear

combination of left- and right invariant forms.
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projects out the (4,2) component. Choosing basis elements η+, η− for the covariantly

constant 2′ spinors, we can take the following ansatz for ε0:

ε0 =

(

ε+
1

ε+
2

)

⊗ η+ +

(

ε−1
ε−2

)

⊗ η−. (2.11)

with ε± constant and antichiral (γ(6)ε
± = −ε±) doublets on AdS3 ×S3 and η± covariantly

constant and antichiral (γ(4)η± = −η±) spinors on M . Both for M = T 4 and M = K3, we

have 16 independent Killing spinors.

2.3 Poincaré supersymmetries

The following coordinate transformation takes us to Poincaré coordinates (t, x, u) for AdS3:

u =
1√
r1r5

(cosh ξ cosh ω cos τ + cosh ξ sinh ω)

t =
1

u
(cosh ξ cosh ω sin τ)

x =
1

u
sinh ξ. (2.12)

The AdS3 part of the metric and 3-form become

ds2
AdS3

= r1r5

[

u2(−dt2 + dx2) +
du2

u2

]

F
(3)
AdS3

=
2r2

5

g
udt ∧ dx ∧ du.

The 16 near-horizon Killing spinors split into 8 spinors that extend to the full asymptoti-

cally flat spacetime (as they generate a Poincaré superalgebra we will henceforth refer to

them as ‘Poincaré supersymmetries’) and 8 spinors corresponding to enhanced near-horizon

supersymmetries (generating special conformal transformations). In Poincaré coordinates,

the Poincaré supersymmetries are time-independent and are given by:

εP =
√

uRε− (2.13)

where R is the SU(2) group element

R = e
π
2
−ψ

2
Γ45σ1

e
π
2
−θ

2
Γ35σ1

e
φ
2
Γ43σ1

and ε− is a spinor that satisfies, in addition to (2.8), the extra projection condition

Γ01σ1ε− = −ε−. (2.14)

Here we have numbered the coordinates as (x0, x1, x2) = (t, x, u). See appendix A for

more details on how the Poincaré supersymmetries extend to the full asymptotically flat

geometry.
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2.4 Supersymmetric D-brane probes

A supersymmetry of the background is preserved in the presence of a bosonic Dp-brane

configuration if it can be compensated for by a κ-symmetry transformation [27]. This can

be expressed as a projection equation

(1 − Γ)ε = 0 (2.15)

where Γ (satisfying trΓ = 0, Γ2 = 1) is the operator entering in the κ-symmetry transfor-

mation rule on the Dp-brane and ε is a general Killing spinor (constructed above) pulled

back to the world-volume. The operator Γ can be written in a simple form in a special

worldvolume Lorentz frame in which the worldvolume field strength F takes the form

2πα′F = tanh Φ0e
0 ∧ e1 +

(p−1)/2
∑

r=1

tan Φre
2r ∧ e2r+1.

Γ is then given by [27]

Γ = e−aΓ(0)(σ3)
p−3

2 iσ2 (2.16)

with

Γ(0) = Γ0...p

a =

(p−1)/2
∑

r=0

ΦrΓ
2r2r+1σ3. (2.17)

In the above formulas, underlined indices are orthonormal frame indices on the D-brane

worldvolume.

3. D-branes spanning AdS2

In this section, we will consider D-branes that span an AdS2 subspace within AdS3 × S3.

They can be taken to be embedded at constant ξ = ξ0 in the coordinates (2.1). We will

see that the requirement of supersymmetry fixes ξ0 in terms of the charges carried by the

brane.

3.1 D1-brane along AdS2

3.1.1 Near-horizon supersymmetries

We consider a D1-brane probe embedded in AdS3 at constant ξ = ξ0 and static in the

remaining S3 × M directions. The worldvolume coordinates can be taken to be τ, ω. We

allow for an electric field on the worldvolume which is conveniently parametrized as

2πα′F = tanh Φ0e
0 ∧ e2.

Here and in what follows, with a slight abuse of notation, the ea stand for the corresponding

target space vielbein elements pulled-back to the world-volume. Explicitly, we have

e0 =
√

r1r5 cosh ξ0 cosh ωdτ

e2 =
√

r1r5 cosh ξ0dω (3.1)

– 7 –
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The supersymmetries preserved by the brane should satisfy (1 − Γ)ε = 0 with

Γ = e−Φ0Γ02σ3

Γ02σ
1

ε = e
ξ0
2

Γ20σ1

e
ω
2
Γ10σ1

e
τ
2
Γ21σ1

R0ε0

where R0 is a constant SU(2) group element depending on the position in the S3 given by

R0 ≡ R(ψ0, θ0, φ0) = e
π
2
−ψ0

2
Γ45σ1

e
π
2
−θ0
2

Γ35σ1

e
φ0

2
Γ43σ1

.

Imposing (1 − Γ)ε = 0 for all values of τ, ω leads to two equations

(1 − se−aΓ01σ
1)es

ξ0
2

Γ02σ1

R0ε0 = 0 (3.2)

where s = ±1. Multiplying with es
ξ0
2

Γ02σ1

and taking linear combinations one finds that a

solution exists if

tanh ξ0 = − 1

cosh Φ0
⇔ | tanh Φ0| =

1

cosh ξ0
.

Plugging in our ansatz for ε0 (2.11), the projection condition on the surviving supersym-

metries can be written in terms of the 6-dimensional spinor doublet ε± as

(1 − sgn(Φ0)R
−1
0 γ02σ

3R0)ε
± = 0. (3.3)

Hence the brane preserves half the supersymmetries of the background, and the preserved

supercharges depend on the position of the brane on S3 through R0 as well as on the sign

of Φ0.

The latter is related to the sign of the fundamental string charge bound to the D1-

brane. Indeed, for nonzero Φ0, the D1-brane acts as a source for the B-field and carries an

induced fundamental string charge as well. Demanding that it is properly quantized and

equal to q imposes a quantization condition on Φ0:

sinh Φ0 =
gr1

r5
q.

Note that, from (3.3), it follows that branes carrying opposite fundamental string charge

can preserve the same supersymmetries provided they sit at antipodal locations on the S3.

A similar property was observed for branes in other AdSp × Sq backgrounds [1, 2].

The radial position ξ0 is determined by the fundamental string charge as

sinh ξ0 =
r5

gr1

1

|q| .

Of course, the above equations provide a solution to the equations of motion following from

the DBI action as one can easily verify.

The above (q, 1) string solution S-dualizes to a (1, q) string the F1-NS5 background.

For q = 1, the latter solution was found from the DBI equations of motion in [16]. Our

analysis implies that this solution should be supersymmetric as well.
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3.1.2 Poincaré supersymmetries

We now check whether the above solution preserves any Poincaré supersymmetries. A

D1-brane at constant ξ = ξ0 satisfies, in Poincaré coordinates (2.12),

u(x) =
sinh ξ0

x
.

Taking (t, x) to be the worldvolume coordinates, the κ-projector becomes

Γ = e−Φ0Γ01σ3Γ01σ1

with

Γ01 = − tanh ξ0Γ01 +
1

cosh ξ0
Γ02. (3.4)

To check whether the D1-brane preserves some fraction of the Poincaré supersymmetries,

we need to verify whether the equation (1−Γ)εP (with εP given in (2.13)) has any solutions.

Using (2.14) one finds the equation

[

1 + cosh Φ0 tanh ξ0 −
cosh Φ0

cosh ξ0
Γ02σ1 + sinh Φ0iσ2

]

Rε− = 0

As before, a solution exists when tanh ξ0 = − 1
cosh Φ0

and requires

(1 ± R−1
0 Γ02σ3R0)ε− = 0.

where the sign again depends on the sign of Φ0. This projection condition is compatible

with (2.14) and we conclude that the D1-brane preserves half of the Poincaré supersym-

metries.

3.2 D3-branes along AdS2 and wrapping a 2-cycle in M

3.2.1 Near-horizon supersymmetries

Here, we consider a D3-brane spanning and AdS2 subspace in AdS3 at ξ = ξ0 and wrapping

a 2-cycle Σ in M . We denote the pull-back of the induced volume form on Σ by volΣ and

define a corresponding Γ-matrix combination:

ΓΣ =
1

2
√

g′
εâb̂Γâb̂ (3.5)

with g′
âb̂

the induced metric on Σ. We parametrize the worldvolume flux as

2πα′F = tanh Φ0e
0 ∧ e2 + tan Φ1volΣ

and take cos Φ1 ≥ 0. The κ-projector is given by

Γ = e−Φ0Γ02σ3e−Φ1ΓΣσ3Γ02ΓΣiσ2.

Imposing the supersymmetry condition (1 − Γ)ε = 0 leads to two equations

(1 − e−Φ0Γ02σ3e−sΦ1ΓΣσ3Γ02ΓΣiσ2)e
s

ξ0
2

Γ02σ1R0ε0 = 0
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with s = ±1 and R0 defined in (3.2). After some manipulations one finds that a solution

exists if

tanh ξ0 = − sin Φ1

cosh Φ0
(3.6)

and requires the projection
(

1 − R−1
0

(

sinh Φ0

cos Φ1
ΓΣσ1 +

cosh Φ0

cosh ξ0 cos Φ1
Γ02ΓΣiσ2

)

R0

)

ε0 = 0

This projection equation can be rewritten in a more standard form using the identity

cosh Φ0

cosh ξ0
=

√

sinh2 Φ0 + sin2 Φ1

which follows from (3.6). The projection condition becomes
(

1 + R−1
0 e−

α
2
Γ02σ3Γ02ΓΣiσ2e

α
2
Γ02σ3R0

)

ε0 = 0 (3.7)

with α defined by

sinhα =
sinhΦ0

cos Φ1
.

In the above equation, both ΓΣ and ε0 are in general dependent on the position on Σ and

it is not trivial that the equation can be satisfied everywhere. This will possible if Σ is a

supersymmetric cycle. We proceed by plugging in our ansatz for ε0 (2.11):

ε0 =

(

ε+
1

ε+
2

)

⊗ η+ +

(

ε−1
ε−2

)

⊗ η−. (3.8)

In this ansatz, we are free to choose a convenient basis η+, η− for the internal co-

variantly constant spinors. It turns out that they can be chosen to be eigenstates of ΓΣ.

Indeed, when M = T 4, Σ is a T 2 within T 4 and ΓΣ is position independent in suitable

coordinates. The constant spinors η+, η− can be chosen to diagonalise ΓΣ: ΓΣη± = ∓iη±.

When Σ is a supersymmetric cycle in M = K3 and, we can also choose η+, η− to

diagonalise ΓΣ. Because K3 is hyperkähler, it admits an S2 family of complex structures,

and we assume Σ to be holomorphic with respect to one of these complex structures.

Choosing holomorphic coordinates zi, z̄ ī with respect to this particular complex structure

we can choose a basis η+, η− of covariantly constant spinors on K3 satisfying

γīη+ = 0, γijη+ = Ωijη−

γiη− = 0, γīj̄η− = −Ω̄īj̄η+. (3.9)

with Ω the (2, 0) form. ΓΣ acts on η± as ΓΣη± = ∓iη±.

Summarizing, both on M = T 4 and M = K3 we can take η+, η− to satisfy

ΓΣη± = ∓iη±.

Substituting into (3.7) gives projection conditions on the 6-dimensional spinor doublets

ε+ =

(

ε+
1

ε+
2

)

, ε− =

(

ε−1
ε−2

)

:
(

1 ± R−1
0 e−

α
2

γ02σ3γ02σ2e
α
2

γ02σ3R0

)

ε± = 0

We see that indeed half of the supersymmetries is preserved.
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3.2.2 Poincaré supersymmetries

It’s straightforward to show that these branes preserve half of the Poincaré supersymmetries

as well. The projection condition on the Poincaré Killing spinors becomes
(

1 − e−Φ0Γ01σ3e−Φ1ΓΣσ3Γ01ΓΣiσ2

)

ε− = 0

with Γ01 defined in (3.4). Using the equation of motion (3.6) and (2.14) this reduces to

the projection equation
(

1 + R−1
0 e−

α
2
Γ02σ3Γ02ΓΣiσ2e

α
2
Γ02σ3R0

)

ε− = 0

with α defined by

sinhα =
sinhΦ0

cos Φ1
.

Note that this projection condition is compatible with (2.14) and can be solved as in the

previous section using the fact that Σ is a supersymmetric cycle. Hence we conclude that

the D3-brane preserves half of the Poincaré supersymmetries.

3.3 D5-branes spanning AdS2 × M

3.3.1 Near-horizon supersymmetries

In this subsection we consider a D5-brane spanning and AdS2 subspace in AdS3 at ξ = ξ0

and wrapping the whole of M . Choosing suitable complex coordinates on M we can take

the the worldvolume flux as

2πα′F = tanh Φ0e
0 ∧ e2 + i tan Φ1e

1 ∧ e1̄ + i tan Φ2e
2 ∧ e2̄

with cos Φ1,2 ≥ 0. The κ-projector is given by

Γ = e−Φ0Γ02σ3e−iΦ1Γ11̄σ3e−iΦ2Γ22̄σ3Γ02Γ(4)σ1.

Requiring (1 − Γ)ε = 0 and using the chirality property (2.8) leads to two equations

(1 + se−Φ0Γ02σ3e−is(Φ1+Φ2)Γ11̄σ3Γ02σ1)e
s

ξ0
2

Γ02σ1R0ε0 = 0

with s = ±1. Note that only the sum Φ ≡ Φ1 + Φ2 of the worldvolume flux parameters

on M enters the equations, while their difference is left undetermined. After some algebra,

one finds that a solution exists if

tanh ξ0 =
cos Φ

cosh Φ0
. (3.10)

and requires the projection
(

1 + R−1
0 e−

α
2
Γ02σ3Γ02Γ11̄σ2e

α
2
Γ02σ3R0

)

ε0 = 0 (3.11)

where we defined α by

sinhα =
sinhΦ0

sin Φ
.
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We proceed by plugging in the ansatz for ε0 (2.11) and choosing internal spinors η+, η−
satisfying

Γ11̄η± = ∓η±.

This can trivially done for M = T 4, while for M = K3 one can choose η± to obey (3.9).

The resulting 6D projection conditions
(

1 ± R−1
0 e−

α
2
Γ02σ3Γ02Γ11̄σ2e

α
2
Γ02σ3R0

)

ε± = 0

show that the brane is half-BPS.

3.3.2 Poincaré supersymmetries

As in the previous cases, these branes preserve half of the Poincaré supersymmetries as

well. The κ-projection condition on the Poincaré Killing spinors (2.13) leads to a single

equation
(

1 + e−Φ0Γ01σ3e−iΦΓ11̄σ3Γ01σ1

)

ε− = 0

with Γ01 defined in (3.4). Using the equation of motion (3.10) and (2.14) this reduces to

the projection equation
(

1 + R−1
0 e−

α
2
Γ02σ3Γ02Γ11̄σ2e

α
2
Γ02σ3R0

)

ε− = 0

with α again defined by

sinhα =
sinhΦ0

sinΦ

This projection condition is compatible with (2.14) and we conclude that the D5-brane

preserves half of the Poincaré supersymmetries.

4. D-branes spanning AdS2 × S2

In this section we consider D-branes spanning an AdS2 × S2 subspace within AdS3 × S3.

They can be taken to be embedded at constant ξ = ξ0 and ψ = ψ0 in the coordinate

system (2.1).

4.1 D3-branes along AdS2 × S2

4.1.1 Near-horizon supersymmetries

We consider a D3-brane probe in this background sitting at constant ξ = ξ0 and ψ = ψ0

and static on M . The worldvolume coordinates can be taken to be (τ, ω, θ, φ) and we allow

for an electromagnetic field on the worldvolume parametrized as

2πα′F = tanh Φ0e
0 ∧ e2 + tan Φ1e

4 ∧ e5

with cos Φ1 ≥ 0, e0, e1 as in (3.1) and

e4 =
√

r1r5 sin ψ0dθ

e5 =
√

r1r5 sin ψ0 sin θdϕ (4.1)
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Then the supersymmetries preserved by the brane are solutions of (1 − Γ)ε = 0 where the

Killing spinor ε is given in (2.7), (2.8) and

Γ = e−Φ0Γ02σ3

e−Φ1Γ45σ3

Γ0245iσ
2.

Imposing (1 − Γ)ε = 0 for all values of τ, ω, θ, φ leads to four equations

[

1 − e−s2Φ0Γ02σ3

e−s1Φ1Γ45σ3

iΓ0245σ
2
]

es1

ξ0
2

Γ02σ1

es2

π
2
−ψ0

2
Γ45σ1

ε0 = 0 (4.2)

with s1,2 = ±1. Multiplying with es1

ξ0
2

Γ02σ1

es2

π
2
−ψ0

2
Γ45σ1

and taking linear combinations

one finds that solution exist if

tanh ξ0 = − sin Φ1

cosh Φ0

cot ψ0 = −sinhΦ0

cos Φ1
(4.3)

which implies that the worldvolume fluxes take the values

tanh Φ0 = − cos ψ0

cosh ξ0

tan Φ1 = −sinh ξ0

sinψ0

and the preserved supersymmetries have to satisfy

(1 − Γ0245iσ
2)ε0 = 0. (4.4)

Plugging in our ansatz for ε0 (2.11), this can be written in terms of the 6-dimensional

spinor doublets ε± as

(1 − γ0245iσ
2)ε± = 0. (4.5)

Hence such D3-branes are half-BPS.

In the presence of electric and magnetic worldvolume flux the D3 brane sources the

electric NS and R two forms B(2) and C(2) and carries induced F− and D-string charges.

This imposes two charge quantization conditions which can be computed from requiring

that the solution provides sources for B(2) and C(2) with quantized coefficients. The quan-

tization conditions read:

ψ0 =
gπα′

r2
5

q =
q

Q5
π

sinh ξ0 sin ψ0 =
πα′

r1r5
p (4.6)

where q, p are the induced F− and D-string charges respectively and we have used (2.2).

Since 0 ≤ ψ0 ≤ π we see that the radius of the S2 can take on Q5 different values. All

these solutions preserve the same set of supersymmetries as follows from (4.5). Since the

S2 in S3 is contractible, these branes do not carry a net D3 charge and should be most
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likely interpreted as bound states of (p, q) strings ‘puffed-up’ through a version of the Myers

effect [28].

The S-dual version of this solution in the F1-NS5 background was constructed and

shown to be supersymmetric in [16]. Note that our solution confirms the charge quanti-

zation conditions found there which are more subtle in the S-dual background due to the

presence of background NS flux.

4.1.2 Poincaré supersymmetries

We can again check whether the solution preserves any Poincaré supersymmetries. For

a D3-brane spanning an AdS2 × S2 subspace ξ = ξ0, ψ = ψ0 in global coordinates, the

κ-projector in Poincaré coordinates takes the form

Γ = e−Φ0Γ01σ3e−Φ1Γ45σ3Γ0145iσ2.

with Γ01 defined in (3.4). Requiring (1 − Γ)εP = 0 with εP given in (2.13), (2.14) for all

values of θ, ϕ on S2 leads to two equations

(

1 − e−sΦ0Γ01σ3

e−Φ1Γ45σ3

Γ0145iσ
2
)

es
π
2
−ψ0

2
Γ45σ1

ε− = 0 (4.7)

with s = ±1. Multiplying by es
π
2
−ψ0

2 eΦ1Γ45σ3

and using (2.14) and the equations of mo-

tion (4.3) one gets a single condition

(1 − Γ0245iσ2)ε− = 0.

This is consistent with (2.14) and again we see that half of the Poincaré supersymmetries

are preserved.

4.2 D5-branes spanning AdS2 × S2 and wrapping a 2-cycle in M

Next, we consider D5-branes that span and AdS2 × S2 subspace and wrap a 2-cycle Σ in

M . Although one can construct solutions to the DBI equations of this form, none of them

is actually supersymmetric as we will presently show.

Parametrizing the worldvolume flux as

2πα′F = tanh Φ0e
0 ∧ e2 + tan Φ2e

4 ∧ e5 + tan Φ2volΣ

with e0, e2, e4, e5 as in (3.1), (4.1) the κ projector is given by

Γ = e−Φ0Γ02σ3e−Φ1Γ45σ3e−Φ2ΓΣσ3Γ024567σ1

with ΓΣ as in (3.5). Requiring (1 − Γ)ε = 0 everywhere leads to four equations

(

1 − s1s2e
−s2Φ0Γ02σ3−s1Φ1Γ45σ3e−s1s2Φ2ΓΣσ3Γ0245ΓΣσ1

)

es1

ξ0
2

Γ02σ1+s2

π/2−ψ0

2
Γ45σ1ε0 = 0

with s1,2 = ±1. Multiplying by e−s1

ξ0
2

Γ02σ1−s2

π/2−ψ0

2
Γ45σ1es2Φ0Γ02σ3+s1Φ1Γ45σ3+s1s2Φ2ΓΣσ3

the four equations can be written out schematically as

A(s1, s2)ε0 = (B(s1, s2)σ1 + C(s1, s2)iσ2 + D(s1, s2)σ3) ε0
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where the coefficients A,B,C,D don’t depend on the σ-matrices. Anticommuting the

s1 = 1, s2 = 1 and s1 = 1, s2 = −1 equations leads to

(1 + sin2 ψ0 cosh 2Φ0 cos 2Φ2 + cos2 ψ0 cos 2Φ1)ε0 = − sin2 ψ0 sinh 2Φ0 sin 2Φ2Γ
02ΓΣε0

Since (Γ02ΓΣ)2 = −1, solutions are possible if both sides vanish separately. In particular,

one needs either sin ψ0, Φ0 or sin 2Φ2 to vanish. We found none of these cases to be

consistent with the remaining equations.

4.3 D7-branes spanning AdS2 × S2 × M

4.3.1 Near-horizon supersymmetries

Here we consider a D7-brane spanning and AdS2×S2 subspace in AdS3×S3 at ξ = ξ0, ψ =

ψ0 and wrapping the whole of M . Choosing complex coordinates on M , the worldvolume

flux can be brought in the form

2πα′F = tanh Φ0e
0 ∧ e2 + tan Φ2e

4 ∧ e5 + i tan Φ2e
1 ∧ e1̄ + i tan Φ3e

2 ∧ e2̄

and the κ projector is given by

Γ = e−Φ0Γ02σ3e−Φ1Γ45σ3e−iΦ2Γ11̄σ3e−Φ3Γ22̄σ3Γ0245Γ(4)iσ2.

Requiring (1 − Γ)ε = 0 and using the chirality property (2.8) leads to four equations

(1 + e−s2Φ0Γ02σ3e−s1Φ1Γ45σ3e−is1s2ΦΓ11̄σ3Γ0245iσ2)e
s1

ξ0
2

Γ02σ1es2

π/2−ψ0

2
Γ45σ1ε0 = 0 (4.8)

with s1, s2 = ±1. Note that only the sum Φ ≡ Φ2 + Φ3 enters the equations while the

difference is unconstrained. Even though solutions of the D-brane Born-Infeld equations

exist for general Φ, manipulations similar to the ones in the previous section show that

that the above supersymmetry conditions are consistent only for

Φ = 0.

Note that this implies that the worldvolume field strength on M is anti-selfdual. In this

case, the equations (4.8) reduce (up to a sign difference) to the ones solved in section 4.1.

When M = T 4, this was to be expected from T-duality, which leaves the background

invariant and relates the probe solutions. The solution is given by

tanh ξ0 =
sin Φ1

cosh Φ0

cot ψ0 = −sinhΦ0

cos Φ1

(1 − γ0245iσ
2)ε± = 0. (4.9)

Comparing with (4.5), we note that the S2-wrapping D3-branes and D7-branes are mutually

BPS.

As before, the values of ξ0, ψ0 are quantized in terms of the induced charges carried by

the brane. For nonzero Φ0,Φ1, the D7-brane provides a source for the NSNS 2-form B(2)
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and the D5-brane RR potential C(6) and carries induced F1- and D5- charge. This leads

to quantization conditions

ψ0 =
q

Q1
π

sinh ξ0 sin ψ0 =
πα′

r1r5
p5 (4.10)

where q and p5 denote the induced F1- and D5- charge respectively. We see that, in this

case, the S2 radius can take on Q1 different values, and the corresponding solutions preserve

the same set of supersymmetries.

4.3.2 Poincaré supersymmetries

A calculation almost identical to paragraph 4.1.2 shows that these branes preserve half of

the Poincaré supersymmetries as well.

5. Discussion and outlook

In this paper, we have constructed a variety of supersymmetric probe brane solutions in

the near-horizon D1-D5 background. They are all static with respect to global time and

preserve half of the near-horizon supersymmetries. Since the global time generator corre-

sponds to L0+L̄0 in the dual CFT, we expect these branes to correspond to supersymmetric

conformal operators in the dual CFT. In appendix B we consider branes spanning some

other submanifolds, none of which is found to be supersymmetric.

As was mentioned in the Introduction, one of the motivations for studying the branes

constructed in this paper is the fact that they share some properties with brane probes in

other D-brane backgrounds that have been related to microstates [2, 6 – 8]. An important

open question is therefore whether some of the D-branes considered here can be related to

the microstates of the D1-D5 system. One way to clarify their role would be to study their

interpretation from the point of view of the dual CFT description of the D1-D5 system

(see [10] for a review). Branes spanning an AdS2 subspace run off to the boundary of

AdS3 where they form a line defect in the dual CFT [30, 22]. Similar AdS2 branes in

the AdS5 × S5 background were given a dual CFT interpretation in [21]. We leave this

interesting topic for further study. A related issue concerns the relation, if any, of the probe

brane solutions considered here and the microstate geometries for the D1-D5 system [29].

It would also be of interest to extend these solutions to the full asymptotically flat

geometry. It may be mentioned that in the context of two dimensional black holes, branes

with similar properties (in particular in the asymptotically flat geometry) have been dis-

cussed [31, 32].
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A. Supersymmetries of the asymptotically flat background

In this appendix we sketch how the Poincarée supersymmetries (2.13), (2.14) arise from

the Killing spinors of the full asymptotically flat geometry. We will use the solution for

the D1/D5 system given in e.g. [10] The dilatino equation

(ΓM∇MΦ + ΓMNPF
(3)
MNPσ1)ε = 0

becomes
(

− r2
1

f1r3
+

r2
5

f5r3

)

Γ2ε −
(

r2
1

f1r3
Γ012 +

r2
5

f5r3
Γ345

)

σ1ε = 0

In order to have a solution, we need to impose two projection conditions

Γ01σ1ε = −ε; Γ2345σ1ε = ε (A.1)

The second equation can be traded for Γ(6)ε = −ε and taking the near-horizon limit we

recover the two projection conditions (2.14), (2.4) imposed on the Poincaré supersymme-

tries.

In the near horizon limit however, the first two terms in the above dilatino equation

cancel leaving behind a single projection condition equivalent to

Γ(6)ε = −ε (A.2)

which becomes the projection condition (2.4) on the near-horizon supersymmetries.

B. D-branes spanning other submanifolds

In the main text, we have considered D-branes which span an AdS2 subspace in AdS3. In

this appendix we explore some other possibilities. We restrict attention to D-branes which

are static with respect to global time. We find that none of the branes considered here

preserve any supersymmetry.

B.1 D3-brane wrapping S3

Consider a static D3-brane at ξ = ξ0, ω = ω0 in AdS3 and wrapping the S3. The world-

volume gauge field can be brought in the form

2πα′F = tanh Φ0e
0 ∧ e3 + tan Φ2e

4 ∧ e5.

One easily checks that the DBI equations of motion impose Φ0 = ξ0 = ω0 = 0. The

conditions for such a solution to preserve supersymmetry are

(1 − s1e
−s1s2Φ1Γ45σ3Γ0345iσ2)ε0 = 0

for s1, s2 = ±1. One easily checks that the resulting four equations cannot be solved

simultaneously; hence there are no supersymmetric solutions in this case.
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B.2 Branes spanning AdS2 wrapping a T 2 within S3

In this section, we will discuss branes wrapping a T 2 ∈ S3. One motivation to consider such

branes (apart from an exercise of imagination) is from the viewpoint of the R-symmetry

of the SCFT dual to the AdS3 string theory. Extended objects in S3 will transform non-

trivially under the SO(4) isometry of S3 which becomes the R-symmetry of the Higgs

branch. The Coulomb branch has a different R-symmetry. It is interesting to consider

the supersymmetry properties of such toroidal branes in S3 then because such branes do

not transform in some obvious manner under SO(4) (in contrast to branes which wrap an

S2 which are conjugacy classes of SU(2) and hence invariant under an vectorial SU(2) of

SO(4)).

In order to study these branes, we will use Euler-angle co-ordinates on S3 - the metric

takes the form

dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2 (B.1)

The spin-connection one form can be taken to be

ω46 = cos θdφ1 ω56 = − sin θdφ2

with all other components vanishing. Solving the gravitino equations the sphere part of

the killing spinor

e
θ
2
Γ45σ1

e−
φ1

2
Γ46e−

φ2

2
Γ46σ1

ε0

with ε0 a constant spinor. Note that the 4 = φ1, 5 = φ2, θ = 6.

The κ symmetry matrix is

Γ = e−
s3

2
(Φ0Γ02+Φ1Γ45)Γ0245iσ

2

As before, we demand that Γε = ε for all τ, ω, φ1, φ2 and its a simple matter to check that

this gives equations which cannot be satisfied (so long as ξ0 is finite i.e., the brane is at a

finite radius away from the boundary). More specifically, the incompatible equations are

those which come from imposing ΓΓ45ε = Γ45ε and ΓΓ45σ
1ε = Γ45σ

1ε (the latter two are

the conditions which come from requiring that the kappa symmetry condition hold for all

φ1,2).
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